Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 80: 241-253, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890611

RESUMO

Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Extratos Celulares , Escherichia coli/metabolismo
2.
Life (Basel) ; 12(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35455001

RESUMO

A variety of yeast species have been considered ideal hosts for metabolic engineering to produce value-added chemicals, including the model organism Saccharomyces cerevisiae, as well as non-conventional yeasts including Yarrowia lipolytica, Kluyveromyces marxianus, and Pichia pastoris. However, the metabolic capacity of these microbes is not simply dictated or implied by genus or species alone. Within the same species, yeast strains can display distinct variations in their phenotypes and metabolism, which affect the performance of introduced pathways and the production of interesting compounds. Moreover, it is unclear how this metabolic potential corresponds to function upon rewiring these organisms. These reports thus point out a new consideration for successful metabolic engineering, specifically: what are the best strains to utilize and how does one achieve effective metabolic engineering? Understanding such questions will accelerate the host selection and optimization process for generating yeast cell factories. In this review, we survey recent advances in studying yeast strain variations and utilizing non-type strains in pathway production and metabolic engineering applications. Additionally, we highlight the importance of employing portable methods for metabolic rewiring to best access this metabolic diversity. Finally, we conclude by highlighting the importance of considering strain diversity in metabolic engineering applications.

3.
Nat Commun ; 12(1): 5139, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446711

RESUMO

Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.


Assuntos
Sistema Livre de Células/metabolismo , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Butileno Glicóis/química , Butileno Glicóis/metabolismo , Sistema Livre de Células/química , Glucose/química , Glucose/metabolismo , Glicerol/química , Glicerol/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/química , Biologia Sintética
4.
Methods Mol Biol ; 2307: 1-24, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847979

RESUMO

A mutant excision+/integration- piggyBac transposase can be used to seamlessly excise a chromosomally integrated, piggyBac-compatible selection marker cassette from the Yarrowia lipolytica genome. This piggyBac transposase-based genome engineering process allows for both positive selection of targeted homologous recombination events and scarless or footprint-free genome modifications after precise marker recovery. Residual non-native sequences left in the genome after marker excision can be minimized (0-4 nucleotides) or customized (user-defined except for a TTAA tetranucleotide). Both of these options reduce the risk of unintended homologous recombination events in strains with multiple genomic edits. A suite of dual positive/negative selection marker pairs flanked by piggyBac inverted terminal repeats (ITRs) have been constructed and are available for precise genome engineering in Y. lipolytica using this method. This protocol specifically describes the split marker homologous recombination-based disruption of Y. lipolytica ADE2 with a piggyBac ITR-flanked URA3 cassette, followed by piggyBac transposase-mediated excision of the URA3 marker to leave a 50 nucleotide synthetic barcode at the ADE2 locus. The resulting ade2 strain is auxotrophic for adenine, which enables the use of ADE2 as a selectable marker for further strain engineering.


Assuntos
Elementos de DNA Transponíveis , Engenharia Genética/métodos , Transposases/metabolismo , Yarrowia/genética , Vetores Genéticos , Genoma Fúngico , Recombinação Homóloga , Fluxo de Trabalho
5.
Microb Cell Fact ; 19(1): 143, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664999

RESUMO

BACKGROUND: Resveratrol is a plant secondary metabolite with diverse, potential health-promoting benefits. Due to its nutraceutical merit, bioproduction of resveratrol via microbial engineering has gained increasing attention and provides an alternative to unsustainable chemical synthesis and straight extraction from plants. However, many studies on microbial resveratrol production were implemented with the addition of water-insoluble phenylalanine or tyrosine-based precursors to the medium, limiting in the sustainable development of bioproduction. RESULTS: Here we present a novel coculture platform where two distinct metabolic background species were modularly engineered for the combined total and de novo biosynthesis of resveratrol. In this scenario, the upstream Escherichia coli module is capable of excreting p-coumaric acid into the surrounding culture media through constitutive overexpression of codon-optimized tyrosine ammonia lyase from Trichosporon cutaneum (TAL), feedback-inhibition-resistant 3-deoxy-d-arabinoheptulosonate-7-phosphate synthase (aroGfbr) and chorismate mutase/prephenate dehydrogenase (tyrAfbr) in a transcriptional regulator tyrR knockout strain. Next, to enhance the precursor malonyl-CoA supply, an inactivation-resistant version of acetyl-CoA carboxylase (ACC1S659A,S1157A) was introduced into the downstream Saccharomyces cerevisiae module constitutively expressing codon-optimized 4-coumarate-CoA ligase from Arabidopsis thaliana (4CL) and resveratrol synthase from Vitis vinifera (STS), and thus further improve the conversion of p-coumaric acid-to-resveratrol. Upon optimization of the initial inoculation ratio of two populations, fermentation temperature, and culture time, this co-culture system yielded 28.5 mg/L resveratrol from glucose in flasks. In further optimization by increasing initial net cells density at a test tube scale, a final resveratrol titer of 36 mg/L was achieved. CONCLUSIONS: This is first study that demonstrates the use of a synthetic E. coli-S. cerevisiae consortium for de novo resveratrol biosynthesis, which highlights its potential for production of other p-coumaric-acid or resveratrol derived biochemicals.


Assuntos
Técnicas de Cocultura/métodos , Ácidos Cumáricos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Resveratrol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Aciltransferases/genética , Amônia-Liases/genética , Amônia-Liases/metabolismo , Arabidopsis/enzimologia , Basidiomycota/enzimologia , Corismato Mutase/genética , Corismato Mutase/metabolismo , Códon/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Escherichia coli/crescimento & desenvolvimento , Fermentação , Genes Fúngicos , Genes de Plantas , Engenharia Genética , Microbiologia Industrial , Malonil Coenzima A/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Tirosina/metabolismo , Vitis/enzimologia
6.
Nat Commun ; 11(1): 563, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019917

RESUMO

Most mono- and co-culture bioprocess applications rely on large-scale suspension fermentation technologies that are not easily portable, reusable, or suitable for on-demand production. Here, we describe a hydrogel system for harnessing the bioactivity of embedded microbes for on-demand small molecule and peptide production in microbial mono-culture and consortia. This platform bypasses the challenges of engineering a multi-organism consortia by utilizing a temperature-responsive, shear-thinning hydrogel to compartmentalize organisms into polymeric hydrogels that control the final consortium composition and dynamics without the need for synthetic control of mutualism. We demonstrate that these hydrogels provide protection from preservation techniques (including lyophilization) and can sustain metabolic function for over 1 year of repeated use. This approach was utilized for the production of four chemical compounds, a peptide antibiotic, and carbohydrate catabolism by using either mono-cultures or co-cultures. The printed microbe-laden hydrogel constructs' efficiency in repeated production phases, both pre- and post-preservation, outperforms liquid culture.


Assuntos
Escherichia coli/química , Hidrogéis/química , Preservação Biológica/instrumentação , Saccharomyces cerevisiae/química , Técnicas de Cocultura , Escherichia coli/crescimento & desenvolvimento , Preservação Biológica/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
J Biol Chem ; 294(5): 1602-1608, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541924

RESUMO

Cryo-electron microscopy (cryo-EM) has become an indispensable tool for structural studies of biological macromolecules. Two additional predominant methods are available for studying the architectures of multiprotein complexes: 1) single-particle analysis of purified samples and 2) tomography of whole cells or cell sections. The former can produce high-resolution structures but is limited to highly purified samples, whereas the latter can capture proteins in their native state but has a low signal-to-noise ratio and yields lower-resolution structures. Here, we present a simple, adaptable method combining microfluidic single-cell extraction with single-particle analysis by EM to characterize protein complexes from individual Caenorhabditis elegans embryos. Using this approach, we uncover 3D structures of ribosomes directly from single embryo extracts. Moreover, we investigated structural dynamics during development by counting the number of ribosomes per polysome in early and late embryos. This approach has significant potential applications for counting protein complexes and studying protein architectures from single cells in developmental, evolutionary, and disease contexts.


Assuntos
Proteínas de Caenorhabditis elegans/ultraestrutura , Caenorhabditis elegans/embriologia , Embrião não Mamífero/metabolismo , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica/métodos , Ribossomos/ultraestrutura , Análise de Célula Única/métodos , Animais , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/citologia , Modelos Biológicos
8.
Microb Cell Fact ; 14: 105, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194479

RESUMO

BACKGROUND: Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. RESULTS: We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. CONCLUSIONS: With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.


Assuntos
Myxococcus xanthus/genética , Transcriptoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Epotilonas/genética , Epotilonas/metabolismo , Expressão Gênica , Mutagênese Insercional , Myxococcus xanthus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...